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Abstract
Objective—Derive continuous prediction equations and their lower limits of normal for
spirometric indices, which are applicable globally.

Material—Over 160,000 data points from 72 centres in 33 countries were shared with the
European Respiratory Society Global Lung Function Initiative. Eliminating data that could not be
used (mostly missing ethnic group, some outliers) left 97,759 records of healthy nonsmokers
(55.3% females) aged 2.5–95 years.

Methods—Lung function data were collated, and prediction equations derived using the LMS (λ,
µ, σ) method, which allows simultaneous modelling of the mean (mu), the coefficient of variation
(sigma) and skewness (lambda) of a distribution family.

Results—After discarding 23,572 records, mostly because they could not be combined with
other ethnic or geographic groups, reference equations were derived for healthy individuals from
3–95 years for Caucasians (N=57,395), African Americans (N=3,545), and North (N=4,992) and
South East Asians (N=8,255). FEV1 and FVC between ethnic groups differed proportionally from
that in Caucasians, such that FEV1/FVC remained virtually independent of ethnic group. For
individuals not represented by these four groups, or of mixed ethnic origins, a composite equation
taken as the average of the above equations is provided to facilitate interpretation until a more
appropriate solution is developed.

Conclusion—Spirometric prediction equations for the 3–95 age range are now available that
include appropriate age-dependent lower limits of normal. They can be applied globally to
different ethnic groups. Additional data from the Indian subcontinent, Arab, Polynesian, Latin
American countries, and Africa will further improve these equations in the future.

1 INTRODUCTION
Pulmonary function tests fulfill a pivotal role in respiratory medicine. They are used to
diagnose airways obstruction, assess its severity and prognosis, delineate risk factors (e.g.,
preoperative assessment), detect early lung disease, and monitor for normal lung growth and
lung function decline. Unlike the majority of biological indices in medicine, such as plasma
concentrations of chemical analytes or hormones, pulmonary function varies with age,
standing height, sex and ethnicity. Therefore test results need to be compared to predicted
values, and lower and upper limits of normal (LLN and ULN) that are appropriate for the
individual being tested. There is a plethora of published reference equations [1], mostly for
spirometric indices, and most publications relate to Caucasians (we will use this term to
denote people of European ancestry, in line with the National Institutes of Health [2]). With
relatively few exceptions, the appropriateness of the chosen model was not tested and the
LLN or ULN not properly derived. Also many prediction equations are based on small
numbers of subjects, using data collected decades ago so that changes in spirometric
methodology and secular trends (i.e. a trend in pulmonary function in successive birth
cohorts) may affect the applicability to present-day measurements. Few equations take into
account the changing relationship between lung function and height during the adolescent
growth spurt [3–6]. Almost invariably prediction equations cover a limited age range, such
as childhood, school age or adulthood, leading to discontinuities as individuals move from
one set of equations to the next. For example, based on predicted values from Polgar [7] up
to age 18 years, and from the ECSC/ERS [8] for adults, a 175 cm tall boy producing a
forced vital capacity (FVC) of 4.2 L is at 97% of predicted at 17.9 years of age, but at 83%
on his 18th birthday. Such discrepancies are even more marked in individuals who are short
for their age, a frequent sequel of childhood chronic lung disease. Many laboratories accept
the default settings for predicted values for different age ranges offered by the manufacturer
and are insufficiently aware of these problems.
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Thus, there is need for prediction equations based on a sufficiently large representative
population sample across the entire age range, using up to date methodology. The collection
of large numbers of lung function test results in lifelong healthy non-smokers is, however,
time-consuming and costly. It has been shown that collating data collected in different
centres using state of the art techniques and appropriate quality control is a valid and very
cost-effective way of deriving prediction equations [9–10]. Another major breakthrough was
the application of a novel statistical technique [GAMLSS, 11] to collated data from 11
countries; this allowed modelling spirometric indices from early childhood to old age, and
also produced age-specific values for the LLN [12,13]. In a study comprising 43,032
Caucasians from 30 centres, differences in the level of spirometric indices and their
variability were shown to be related to sample size, with no evidence of secular trends over a
30 year period [14], validating the use of collated data. Another benefit of using collated
data was the identification of a biphasic trend in the FEV1/FVC ratio in childhood and
adolescence [15].

In 2005, the American Thoracic Society (ATS) and European Respiratory Society (ERS)
published recommendations for standardised lung function testing [16]. One set of
spirometric reference equations for adults [17], and one for children and adolescents [6], was
recommended for use in the USA; this covered Caucasians, African and Mexican
Americans. The lack of recommendations for the rest of the world underlines the urgent
need to derive all-age reference equations valid world-wide, applicable to as many ethnic
groups as possible. From 2006, an increasing number of centres agreed to share data with
one of the authors (PQ); subsequently the Global Lungs Initiative was established in Berlin
in September 2008, acquiring ERS Task Force status in April 2010. The Global Lungs
Initiative was subsequently endorsed by the ATS, Australian and New Zealand Society of
Respiratory Science (ANZSRS), Asian Pacific Society for Respirology (APSR) and the
Thoracic Society of Australia and New Zealand (TSANZ).

1.1 Objectives
The objectives of the ERS Global Lungs Initiative are to establish improved international
spirometry reference equations that

• are based on individual lung function data collected under standardised
measurement conditions with documented equipment and software

• are modelled using modern statistical techniques to allow continuous equations
across the entire age range from early childhood to old age

• allow flexible and appropriate methods of interpretation using limits of normality,
which adjust for the heterogeneity of between-subject variability according to sex,
ethnic group, age and lung function parameters

• are clinically useful and can be incorporated into commercially available
equipment

• are reported in such a manner as to give a clear indication of where the subject lies
with respect to the ’normal range’.

2 METHODS
2.1 Recruitment and data collection

We contacted individuals, groups or organisations that were known to have collected
representative spirometry data from asymptomatic lifelong non-smokers, using methods and
techniques that complied with temporal international recommendations. Most invitations
arose from searches of the literature for titles in peer reviewed journals. All data were
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anonymised prior to submission, and accompanied by information detailed in a data
collection template. Any person, group or organisation sharing data with the working group
specified in writing that their ethics committees or organisations had given permission for
the data to be used in a research publication.

2.2 Data
Datasets were obtained from 73 centres (initial N=160,330). In France it is prohibited by law
to record ethnicity; as a result 63,031 records known to be of mixed ethnic population could
not be included in the final analyses. In the remaining datasets, ethnicity could not be traced
in an additional 834 cases. In 805 cases data were discarded because they comprised
subjects with suspected asthma. In 123 cases data could not be used to derive reference
values because forced expiratory time was < 1 s. Records with transcription errors that could
not be resolved, with missing values for sex, age, height, FEV1 or FVC, or where the FEV1/
FVC ratio was >1.0 were discarded. Since virtually all data had been previously used in
publications, there were very few errors. Datasets from India, Pakistan, Iran, Oman, the
Philippines and South Africa were either too small in number for analysis, or could not be
combined into groups with other sets (N=17,341). One dataset (N=3483) could not be used
until the data had first been published by the authors. As the statistical analyses are sensitive
to outliers, in subsequent analyses data points that yielded a z-score <−5.0 or >5.0 were
identified as outliers (N=526) and excluded from further analyses. This left data on 31,856
males and 42,331 females aged 2.5–95 years (Figure 1, online supplement (OLS) tables E1,
E2 and E3).

2.3 Quality control
Contributors were required to meet certain conditions [18], and data were only accepted if
internationally agreed standards had been applied at the time of data collection. The large
number of participating centres and the very large number of data precluded rigorous post-
hoc quality control of all original spirograms.

2.4 Indices considered
This study is limited to spirometric indices, analysis of data on lung volumes and transfer
factor being deferred to a later stage. Prediction equations were derived for the FEV1, FVC
and FEV1/FVC across the entire age range. For children aged 3–7 years (an age range
chosen because the forced expiratory time usually exceeds 1 s in older children), the FEV075
and FEV075/FVC were also derived. Data on FEV0.75, FEV0.75/FVC and forced expired
flow when 75% of the FVC has been exhaled (FEF75) were available only for Caucasians.
Data (N=36,831) on FEF25–75% were available in 21 datasets. As very few data became
available on FEV0.5, this index was not analysed.

2.5 Statistical analyses
Datasets can be characterised in terms of the following distributional details: the mean value
(M), the coefficient of variation (scatter, S) and an index of skewness (location, L), in short:
LMS. Analyses were performed with the LMS (lambda, mu, sigma) method, using the
GAMLSS package [11] in the statistical software R [Version 2.14.1; R Foundation, http://
www.r-project.org]; this allows modelling each component of the distribution. GAMLSS
[Version 4.1–2] was used to derive the best fitting function of each outcome as a function of
age and height in males and females. The statistical methods used were as described by Cole
et al. [19].
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2.6 Prediction models
The LMS method, imbedded in GAMLSS, allows modelling the expected mean (µ or M),
the coefficient of variation (σ or S) (CoV), and skewness (λ or L). In addition complex
effects of explanatory variables on the dependent variable can be modelled using splines,
which allow the dependent variable to vary smoothly (non-linearly) as a function of an
explanatory variable. Thus, a continuous, smooth fit over the entire age range can be
obtained by the use of splines. A document to help guide those who may wish to use
GAMLSS, and which explains the procedures with worked examples, can be downloaded
from http://www.spirxpert.com/download/GAMLSS-in-action.zip.

Applying the methodology described by Cole et al. [19] the best fit was estimated using the
Box-Cox-Cole-Green (BCCG) distribution. The optimal degrees of freedom (df) for the
spline curve was chosen to minimise the Schwarz Bayesian Criterion (SBC), where adding
one df to the model penalises the deviance by ln(N) units, N being the sample size. As N for
males and females was ~30,000–40,000, the penalty for an extra df is ~10.3–10.6 deviance
units. Thus a parsimonious model with an optimal spline curve was obtained for males and
females. The general form of the equation was:

Y = a + b·H + c·A + age-spline + d1·group + d2 ·group·A

where Y = dependent variable, H = standing height (cm); A = age (yr); a, b, c, d1 and d2 are
coefficients which vary for each ethnic group, and spline is an age-specific contribution
from the spline function. Group is a dummy variable with values 0 or 1 indicating ethnicity,
where Caucasians are the reference. Any of Y, H or A may be log transformed (see OLS
section 2 for details). Essentially, we are therefore dealing with a linear regression equation
with an age-specific correction in the form of the age-spline.

The goodness of fit was judged from inspection of normal Q-Q plots, worm plots [20], the
distribution of residuals as a function of age and predicted value, and from density plots of
residuals. When collating data covering different age ranges, there is a risk of one or two
outlying datasets distorting the general trend, which GAMLSS might then incorporate into
the smoothing spline. However, inspecting the age distribution of residuals of all datasets
confirmed the absence of such outliers.

2.7 Defining groups
Data were available from 5 continents, comprising different ethnic groups. In datasets with
mixed ethnic groups, ethnicity had been coded for each individual. In all other cases data
allocation was based on the country of origin of the dataset. Preliminary analyses showed
that certain datasets fit together. Hence, the following groups were formed: Caucasian
(persons having origins in any of the original peoples of Europe, the Middle East, or North
Africa), African American, Mexican American, Indian subcontinent, North Africa and Iran,
East Asia, Latin America and Oman. Regression analysis was performed within each group;
the residuals were then displayed as a function of age and inspected for offsets and
variability. Individual datasets generally differed from the overall mean with respect to both
offset and between-subject variability. If considerable disparities with other datasets in a
group were found, the centre was contacted with a view to clarifying potential causes for
differences. Groups were only included in the final multi-ethnic model if there was fair
agreement between their individual datasets in predicted mean and coefficient of variation.
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3 RESULTS
3.1 Data

The total number of subjects originally included in the study (i.e. prior to exclusion for
reasons listed in section 2.2) was 97,759 (55.3% females), age range 2.5–95 years (Table 1,
OLS table E2 and E3); 47.7% were ≤ 20 years, and 0.8% ≥ 80 years old. These data were
combined from 72 datasets from 33 countries (OLS Table E1). Representation was poor
from South America, and absent from Malaysia, Indonesia and sub-Saharan Africa.

3.2 Stature
Stature is the main determinant of pulmonary function therefore we investigated whether
stature differed significantly between populations (see OLS, Figure E2, E3). While there
were significant differences in stature-for-age between populations, the variability between
groups was minimal. The within-group coefficient of variation (CoV) was largest in
preschool children (OLS Figure E3), declining rapidly towards adolescence followed by an
increase, reflecting differences in the timing of the pubertal growth spurt. There was then a
drop until about age 30, followed by a small but steady increase towards old age. With one
exception, the maximum difference in the CoV between populations was about 1%. The
CoV was considerably larger in Indian and Pakistani schoolchildren and adolescents than in
other populations (OLS Figure E3).

3.3 Spirometry datasets by region
Data were available from the following countries: Algeria, Australia, Austria, Brazil,
Canada, Chile, China, France, Germany, Iceland, India, Iran, Israel, Italy, Mexico, the
Netherlands, Norway, Oman, Pakistan, Philippines, Poland, Portugal, South Africa, South
Korea, Sweden, Switzerland, Taiwan, Thailand, Tunisia, United Kingdom, USA, Uruguay,
Venezuela. Not all of these data could be used (OLS Table 1).

3.3.1 Latin-America—Six datasets were available from Latin America: five related to
adults (Mexico City, Sao Paulo, Caracas, Montevideo, Santiago) [10], and the remaining one
to Mexican children and young adults [21]. The samples differed in height (OLS Figure E4)
and predicted spirometric values (OLS Figure E5). These differences could not be explained
by altitude or location, and were probably due to sampling variability (since all but one of
the datasets was of limited size [14]). Furthermore, no data were available between 25 and
40 years of age.

3.3.2 East Asia—Nine datasets with 13,247 records (OLS Table E3) were available from
Hong Kong (China) [22,23], Taiwan [24], Thailand [25], the USA [26], Korea [27], China
[28,29], and one from Chinese children aged 3–6 years [30]; all datasets were from urban
populations. There were significant differences in standing height between centres, Chinese
in the USA and mainland China being taller, and people in Thailand, Taiwan, Hong Kong
and southwest China shorter (OLS Figure E6 and E7) . Regression analysis revealed
significant differences for spirometric indices between centres. While there was remarkable
agreement between 6 of the datasets (data collected between 1996–2002 in Hong Kong,
Taiwan, Thailand, USA and China), predicted values for FEV1 and FVC were significantly
lower than those derived from the remaining two datasets, collected in North China [29] and
Korea [27] (OLS Figure E6). No evidence was found that this related to methodological
differences, or to unrepresentative samples arising from small sample size. The scale of
differences and the limited time span between data collections are not compatible with a
secular trend. In view of this, separate predicted values were derived for East Asians from
the North and the South.
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3.3.3 African-American data—Four African-American datasets were available
[6,17,26,31] comprising 1,520 males and 2,025 females. Since two sets had limited numbers
and age ranges, data were pooled and residuals derived for each centre. The differences
between these datasets were within the range compatible with sampling variability.
Differences in the FEV1/FVC ratio between centres were trivial (maximum z-score
difference 0.06), signifying that deviations in FEV1 and FVC from the overall mean were
proportional.

3.3.4 Mexican-American data—Four Mexican-American datasets were available
[6,17,26,31] comprising 1,622 males and 2,280 females. Two sets contributed only limited
numbers of subjects. Therefore data were pooled and residuals derived for each centre, the
differences again being within the range compatible with sampling variability. The
maximum deviation in z-scores for FEV1 and FVC was −0.22 in males (93 individuals in
dataset), and −0.68 in females (12 individuals in dataset). Differences in FEV1 and FVC
from the overall mean were proportional (maximum deviation of z-score for FEV1/FVC
between centres −0.04).

3.3.5 North Africa and Iran—Six datasets [32–39] were available comprising 7,273
subjects (54.1% male) aged 5–90 years. There were no significant differences between
centres in predicted mean for FEV1 and FVC, but FEV1/FVC in Iranian data (N=6,137) was
systematically higher than in any other dataset, so they could not be fit into any group. For
example, predicted FEV1/FVC (5th centile) in North African and Iranian women age 60
years, 168 cm, are 0.79 (0.67) and 0.82 (0.74), respectively; in 60 year old men (180 cm) the
corresponding values are 0.78 (0.66) and 0.82 (0.74).

3.3.6 Indian subcontinent—Data on children were available from India [40–42] and
Pakistan [43], and on adults of Asian Indian descent from the USA [44] (total N=5,477,
OLS Table E3). One of the sets produced a pattern for FEV1, FVC and FEV1/FVC that
differed significantly from any other dataset, and the remaining two sets of adults and
children did not join well. Therefore reference equations for the Indian subcontinent could
not be derived for the current report.

3.3.7 Oman—Data on 1,256 lifelong non-smokers (51.2% males) aged 6–65 years were
available [45,46]. They did not fit in any of the 4 groups that were formed, could not be
combined with data from Iran, and are therefore not included in the present (Global Lungs
2012) prediction equations (OLS Table E3).

3.3.8 Japan—Although yet to be published, and hence not available to the GLI at time of
going to press, a large Japanese dataset (17–95 years) has recently been collected as part of
the Japan Lung Health Survey [personal communication, 47]. Given the “dual-origin
ypothesis”, according to which ancestral Japanese populations were brought by two major
pre-historic migration events, people migrating into Japan from the north and south of the
Asian continent [48–49], predicted values may fall between those for North and South East
Asians. It is therefore provisionally recommended that predicted values for Japanese
subjects are based on the ‘other’ GLI 2012 equation until a suitable coefficient can be
developed (see section 3.4.1).

3.4 Pooling groups
We set the criteria for combining groups as: (a) minimal effects on predicted mean values
and (b) small effects on the clinically important lower limit of normal (LLN). The latter was
checked by inspection of the percentage of subjects in groups alluded to above whose
observations fell below the fifth centile (LLN 5%, z-score −1.64). As part of this study we
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found that the smaller the sample size in datasets from people of European ancestry, the
more the average and LLN may differ from that of pooled data [14]. However, due to the
large size of the overall dataset, exclusion of any small (N<150) sub-sets wherein average z-
score deviated by > ±0.4 from the overall mean, led to trivial (<0.01 Z) changes in the
average or standard deviation for FEV1 or FVC. Data were not available from all regions of
the world, however, some had to be excluded due to conflicting results. Thus, currently, four
groups could be formed:

Group Country/region

‘Caucasian’ Europe, Israel, Australia, USA, Canada, Mexican Americans, Brazil, Chile, Mexico, Uruguay,
Venezuela, Algeria, Tunisia

Black African American

South East Asian Thailand, Taiwan and China (including Hong Kong) south of the Huaihe River and Qinling
Mountains

North East Asian Korea and China north of the Huaihe River and Qinling Mountains

There are practical advantages to combining groups with very similar predicted values, but
these must be justified physiologically and statistically. For example, we can corroborate
that predicted values for Mexican Americans and Caucasian USA citizens are the same [50].

Obviously, there were differences in the mean predicted value and the 5th centile between
datasets within a group. As shown earlier such differences decreased as sample size
increased [14]. When producing larger subsets from Caucasians, such as Latin Americans,
Mexican Americans and data from North Africa, there was fair agreement in the predicted
levels and the 5th centiles, so that these combinations are clinically useful. Several datasets
did not fit in any of the groups. Data from Iran [32,34] had unusually high FEV1/FVC ratios.
Children from Mexico City (N=4,009) produced about 8% larger predicted values for FEV1
and FVC than other sets in the group of Caucasians and could therefore not be included.
Data on Latin Americans are therefore limited to those over 40 years old. This left 74,187
subjects in 4 groups (Table 2, OLS Tables E2 and E3).

3.4.1 ‘Other’—In the reference equations there are two distinct adjustments for each of the
four ethnic groups, one relating to the mean (M) and the other to the CoV (S) (see sections
3.5 and 3.7). Both are multiplicative adjustments and can be viewed as percentages by
multiplying them by 100. From these we have formed an ‘other’ ethnic group,
corresponding to groups other than the four main groups, and individuals of mixed ethnic
origin. This composite group takes as its M and S adjustments the corresponding
adjustments for the four main ethnic groups, averaged over group and sex. Thus individuals
in this ‘other’ group are compared to the average of the four main ethnic groups. This should
facilitate interpretation until a more appropriate solution is developed.

For ethnic groups not covered by the GLI equations, it will be possible to derive suitable
ethnic M and S adjustments without the need to re-calculate the GLI equations. We suggest
that a representative sample of at least 300 subjects be used for this, collected using
standardised protocols. GLI software provides the facility to incorporate these adjustments
for additional datasets as they become available.

3.5 Prediction models
The best fitting models required log transformation of height, age, FEV1, FVC and FEV1/
FVC. The group by age interaction terms yielded insignificant coefficients in most analyses;
when coefficients were statistically significant, the effect on predicted values was limited to
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a few mL. Therefore, the final analyses are based on a model omitting the interactions, and
assuming proportional differences between groups (see above):

log(Y) = a + b·log(H) + c·log(A) + age-spline + d·group

where group takes a value 0 or 1 for Caucasians, African Americans, North or South East
Asians, as appropriate (OLS section 3.2), and the coefficient d differs between groups. A
smoothing age spline was invariably required for predicting the mean (M) and coefficient of
variation (S) for FEV1, FVC, FEV1/FVC, FEF25–75% and FEF75; it was also required for
modelling skewness (L, λ), except for FEV1, FVC and FEF25–75% in males, and for FVC,
FEV1/FVC and FEF25–57% in females. For FEV0.75 and FEV0.75/FVC in the 3–7 year age
range a simple linear model (i.e. without look-up tables) sufficed.

Note that the d coefficients for M and S in each ethnic group correspond to the
corresponding adjustments in section 3.4.1 above.

3.6 Simplifying look-up tables
As delineated in sections 2.6 and 3.10 on the formula for predictive models, a term spline
which varies with age arises from fitting a smoothing spline. This is presented as a look-up
table for a series of ages which allow interpolation to exact age. It was possible to replace
the look-up table for those aged 25 years and older with an equation, without loss of
accuracy, so that lung function devices with limited memory can significantly improve on
the use of resources (see OLS sections 2 and 3). The 3–25 years age range must still rely on
look-up tables. Particularly in preschool children and adolescents such tables need to be
quite detailed (to at least 1 decimal age in years), as a few months age difference can affect
the predicted values by up to 8.5% [51]. Look-up tables can be downloaded from
www.lungfunction.org/files/lookuptables.xls.

3.7 Proportional differences between ethnic groups
The percentage differences between ethnic groups are shown in Table 3 and illustrated in
Figure 2. Except for FEV1/FVC in South East Asians, predicted values were highest for
Caucasians. The FEV1 and FVC in African Americans and North East Asians differed from
those in Caucasians by the same percentage, signifying that for the same age and height,
lung dimensions differed proportionately (Table 3).

3.8 Effect of collation on predicted values and LLN
Since there were so many more data on Caucasians, including large recently obtained
datasets, the analysis of effects of collation on predicted values and their LLN was limited to
Caucasians. Predicted values from the five largest recent studies (N=24,783) with
acknowledged good quality control [17,31,52–54] were compared with results from the
collated dataset. The CoV for these five studies was calculated by expressing the residual
standard deviation ((predicted – LLN)/1.644) as a percent of the predicted value. With the
exception of NHANES III and NHANES IV [17,31], which produced nearly identical values
in Caucasians, the predicted values varied between the five large studies, with data from
studies within the same country being more different from each other than from the other
two (Figure 3, OLS Figure E8); this has been attributed to the use of different equipment
[54], an important observation highlighting the fact that in spite of good quality control,
differences between instruments affect measurement results. Importantly, the CoV for the
collated dataset were in between the four larger studies, signifying that collation neither
over-inflates variability nor lowers the LLN as a result of poor-quality data. (Figure 3, OLS
Figure E8). Datasets with unusually high or low average predicted values might influence
both predicted mean and scatter. As discussed in section 3.4, removing sets in which the
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average z-score deviated by > ±0.4 (i.e. more than ~5.5% difference) from the overall mean,
led to trivial changes in predicted values and their LLN.

3.9 Age-related change in pulmonary function
The spirometric indices in this study are a power function of height and age. Hence age-
related changes in predicted values are smaller in absolute terms (but not percentage-wise)
in short than in tall people. This is shown in Figure 4 for FEV1 in adult Caucasian males of
height 160, 175 and 190 cm (similar results for FVC). In non-Caucasians predicted values
are smaller than in Caucasians of the same standing height; therefore, for the same age and
height, the annual cross-sectional change will be smaller than in Caucasians. For example,
the annual cross-sectional fall in FEV1 in an adult African American is 15% smaller than in
a Caucasian male of the same age and height (Table 3). As FEV1 ~ heightk (as is FVC),
where k is an allometric constant, the proportionality of age-related cross-sectional changes
can be illustrated by standardising the index for height (FEV1/Hk). Although males and
females have different lung volumes, the cross-sectional pattern after standardising for
height is very similar (Figure 4). Please note that longitudinal changes differ from cross-
sectional age differences [55–67], and are affected by changes in body weight [68–72].

Measured values are often expressed as percent of predicted, and 80% adopted as the LLN.
The scatter around predicted, and hence the LLN, is age-dependent (Figure 5), such that the
LLN is not constant but varies depending on the age and the outcome (Figure 6 and 7).

3.10 Entering height and age into the equations
The prediction equations have the form

predicted value = ea·Hb·Ac�ed·group�espline

where a is the intercept, H = height (cm), b the exponent for height, A = age (years) and c
the exponent for age, and spline the contribution from the age spline; group is Caucasian,
African American, South or North East Asian, and takes the value 1 for the appropriate
group and 0 for the other groups. It follows that the accuracy of the values entered for height
and age matters. For example, the value of k for FEV1 in males = 2.22. Entering H = 160 cm
instead of H = 161 cm changes the predicted value by 1.3%. The calculation of the error for
age is less straightforward, as the contribution of the spline function varies with age. Errors
from entering age inaccurately are largest during adolescence. For example, if one
substitutes 14 years into the equation instead of 14.9, the predicted volume will be under-
estimated by 4.7%. The combined effect of the above 1 cm error in height and 0.9 years
error in age in a 14.9 year old boy of height 161 cm will lead to an error in the predicted
value of 6%. Self-reported height may differ by as much as 6.9 cm from measured height
[73–79]. It follows that one should not rely on self-reported height, and that it should be
measured using a calibrated stadiometer; actual age should be entered with one decimal
accuracy.

The look-up tables for the spline in age have a resolution of 0.25 years, i.e. 3 months. In the
above example a 3 months error in actual age may still lead to a 0.9% error in the predicted
value. Errors can be virtually eliminated, and the look-up table appreciably reduced in size,
by obtaining the value for the smoothing spline in age by interpolating between the two
nearest ages in the look-up table. From 25 years of age onwards, the look-up table can be
replaced by equations which, if used, avoid the need for interpolation and loss of accuracy
(see OLS sections 2 and 3 for details).
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4 DISCUSSION
This is the first study to present spirometry prediction equations spanning ages 3–95 years
for ethnic and geographic groups from 26 countries. It is the result of unprecedented,
unselfish and professional international cooperation endorsed by six international societies.
As the results show, however, it is only the first leg of a journey.

An important benefit of the availability of many data from so many sources is that results
are more generalisable across populations. As shown in this study, subsets of children and
adolescents generate predicted values that connect smoothly to those from subsets
comprising only of adults. This implies that our prediction equations cover the entire age
range, even in countries that contributed data covering a limited age range. Another
advantage is that patterns that emerge from one study can be validated in others. For
example, a previously unrecognised pattern in FEV1/FVC was identified in children and
adolescents, where the ratio increased during adolescence rather than decreasing
monotonically from childhood to adulthood. This is because in childhood FVC outgrows the
total lung capacity and FEV1, leading to falls in FEV1/FVC, a trend that is reversed in
adolescence, a pattern that went undetected with conventional statistical techniques [15]
(Figure 2). By undertaking these analyses, it was possible to confirm that this is a
physiological pattern of development reflecting differential growth of FEV1 and FVC during
adolescence, common to all ethnic groups. Similarly, whereas it might have been speculated
that, within any specific ethnic group, differences in the level and variability of
measurements from participating centres arose from differences in standards or secular
trends (i.e. a trend in lung function with the year of birth), clear evidence has been provided
that this did not affect our findings [14].

This study confirms the existence of proportional differences in pulmonary function between
ethnic groups [80] (Table 3), signifying proportionate scaling of lung size due to differences
in body build, so that the FEV1/FVC ratio is generally independent of ethnic group. This has
clinical advantages in that, with the exception of South East Asians, in whom the FEV1/FVC
ratio is 2.6–2.8% higher than in other groups, it allows a uniform definition of airways
obstruction (i.e. pathological airflow limitation) based on the LLN for FEV1/FVC across
ethnic groups. Whereas the FEV1/FVC ratio in Caucasians can potentially be applied to any
group of subjects with reasonable confidence, this does not apply to the other spirometric
outcomes. When assessing lung function in an individual not represented in one of the
present four groups, the equation for the ‘other’ group is available, although the output
generated by pulmonary function equipment must then alert the user that the predicted
values (for FEV1, FVC, etc.) may not be appropriate for the subject, and that the results
should be interpreted with caution. This may be particularly true for individuals from the
Indian subcontinent, for whom published literature suggests that predicted values may be at
least as low as those found in Black subjects. With on-going data collection, it is hoped that
the majority of ‘missing groups’ will be included within the next 5 years. As discussed in
section 3.4.1, provided a sufficiently large and representative dataset is collected using
standardised protocols, it should be possible to derive suitable ethnic coefficients for specific
groups without re-calculating the GLI equations.

At present, it is common practice to standardise measurements for differences in height, age
and sex by converting them to percent of the predicted value; however, this approach has
important clinical consequences, particularly when used to classify patients and disease
severity using a fixed cut-off [81–85]. Stanojevic et al. [12] were the first to show that the
coefficient of variation for FEV1 and FVC varies with age, the greatest variability occurring
in young children and the elderly, with a minimum during early adulthood [12]. This study
confirms and extends this observation by showing that it occurs in all ethnic and
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geographically defined groups (Figure 5), including a temporary increase in variability
during the adolescent growth spurt. This pattern was observed in individual studies with
large sample size and with known good quality control (Figure 3), further supporting that
this is not an artifact.

4.1 Representativeness of equations for various groups
Comparison of predicted values in four large recent studies [17,52–54] with the present
study shows that there is no inflation of the coefficient of variation, and that, if anything, the
predicted values are marginally higher (Table 4, OLS Figure E8). These findings confirm
that the new equations represent measurements obtained with good quality control,
encompassing the entire process from choosing a representative population sample of
healthy lifelong non-smokers down to selecting laboratory procedures.

Pooling data on the basis of ethnicity proved to be a valid starting point. Taking into account
chance differences due to varying sample size, datasets within groups agreed well, so that
the present set of equations forms a firm basis for application in research and clinical
practice. Yet, there are limitations. The differences observed between the Indian datasets
may arise from considerable variation in socio-economic conditions, particularly in children
and young adults [42,86,87]. The 1 billion inhabitants of the Indian subcontinent are
comprised of a large number of ethnic groups from various racial strains [88] from South to
North; socio-economically and ethnically the population is heterogeneous. Given the large
differences observed, the Task Force cannot currently make a recommendation for predicted
values for this part of the world, although the decrement may be at least as great as that
observed in Black subjects. More data, including information about ethnicity, is required.
Although the data from Latin American adults appeared to fit in with the other Caucasians,
this was not the case for children and adolescents in Mexico City, who produced higher
predicted values for FVC and FEV1. This has been reported previously [21]. It could not be
attributed to being born and raised at altitude (2,250 m), but has been attributed to the fact
that they have shorter legs for stature compared to other ethnic groups [89,90]. Latin
Americans are a mix of people from Spanish descent and a spectrum of indigenous people,
often living at high altitudes. There is also considerable intermarriage. The predicted values
should, therefore, not be applied indiscriminately to Latin Americans of non-European
descent.

This study shows that there are proportional differences in the level of pulmonary function
between Caucasians, South and North East Asians, and African Americans (Table 3). These
differences are compatible with the ‘out of Africa’ theory. This theory, supported by
information from genetic markers [91], points to mankind originating in Africa and
migrating through South East Asia, travelling northwards and slowly populating East Asia
while undergoing evolutionary changes. Our findings also confirm a previous report about
differences in pulmonary function between North and South China [92–94]. When
comparing findings in Hong Kong adults to those of Hankinson (NHANES III), differences
in FVC varied between 12 and 17% depending on age and sex [23], similarly to the present
findings (Table 3). Yet Crapo et al. [95] found average FVC and FEV1 in native Mongolians
to be within 1–2% of the Caucasian predicted values, as in the present study of North East
Asians (Table 3). In view of differences in socio-economic conditions between urban and
rural communities in China [93,94,96–99], differences between Han people and minority
groups [91,93, 96,97] and ethnic differences in body build [99–101], the present prediction
equations may not fit all East Asian ethnic groups equally well. Whereas post-war
improvements in socio-economic conditions in Japan led to increased height driven by
growth of leg length [102], with the exception of Chinese girls in Beijing [103], there is no
obvious secular trend in the leg length/height ratio [100,103,104], suggesting that as people
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grow taller lung volumes increase proportionately. However, more information is required
about pulmonary function in other ethnic groups, including ethnic minorities.

4.2 Data quality
A major concern when collating data is that the selection of subjects, measurement
techniques including measurement of stature, differences between instruments, laboratory
standards and quality criteria when selecting spirometric indices, may lead to predicted
values and lower limits of normal which are biased due to inclusion of poor quality data. All
the above factors may, to a varying extent, have influenced the present results. Rigorous
post-hoc quality control of each aspect might have helped to minimise such contributions to
variability, but this was not feasible for >150,000 sets of results. However, with few
exceptions the data had previously been published in peer reviewed journals, and complied
with temporal international recommendations. Evidence for unsatisfactory quality of
individual datasets might come from outlying values for predicted values, and from
variability. When testing this in Caucasians, large datasets from different parts of the world
agreed remarkably well; the smaller the dataset, the larger the spread of deviations from the
overall mean [14]. This reflects the fact that the smaller the sample, the greater the
likelihood that it is not entirely representative of the population. Thus, there is normal
variability between population samples and no evidence that predicted values and the LLN
are biased by poor quality studies. By implication, small samples are not appropriate for
validating reference equations for use in individual laboratories; a minimum of 150 males
and 150 females is required [14], making this effort impracticable for most laboratories.
Further evidence that poor data quality has not affected the present study is that predicted
values and LLN are for practical purposes the same as in 4 large recent studies with good
quality control (Figure 3, OLS Figure E8) [17,52–54].

Quality control of spirometric data, applying temporal international standards, is a double-
edged sword. In a study of adults, carried out in a laboratory [105] that adhered to the
quality assurance programme now widely adopted in New Zealand and Australia [106], over
30% of measurements needed to be discarded because they did not meet ATS quality criteria
[107]. The great majority of these exclusions related to subjects <30 years; the major
stumbling block was the requirement that subjects should exhale for at least 6 seconds. It
illustrates that present day quality criteria are not compatible with what is achievable in
professionally run laboratories, and need reviewing so as to be uniformly applicable in the
field. Strict adherence to the present end of test criteria will lead to biased datasets, for
example by favouring young adults with the longest forced expiration times and hence, in all
likelihood, a smaller FEV1 and FVC than their counterparts who consistently empty their
lungs within 6 seconds. Similar reasoning applies to children. It is unclear to what extent
such bias crept into this study. Because an FVC can always be obtained, unlike FEV6, the
present prediction equations are applicable across all ages. For this reason, FEV1/FVC may
be a more appropriate outcome than FEV1/FEV6 when diagnosing obstructive lung disease
across a wide age range.

4.3 Secular trends
In Caucasian subjects, with data collected over 3 decades, no evidence was found for a
secular trend (i.e. a trend in the level of lung function in successive birth cohorts) in
pulmonary function [14]. However, such trends may well emerge as more data from
developing countries become available, where improving socio-economic conditions lead to
greater physical development and improved health.
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4.4 Age-related changes in FEV1 and FVC
As FEV1 and FVC are power functions of height and age, the cross-sectional annual change
in these variables is larger in tall than in short people (Figure 4). For example, in a
Caucasian adult male there is an accelerating cross-sectional decline in FEV1 after age 30
years, with a nadir at age 62 when the annual loss ranges between 32 and 46 mL. The
decline then decelerates, possibly reflecting a healthy survivor effect.

4.5 Mixed ethnic descent
The well documented ethnic and racial differences in pulmonary function arise from
differences in body build (such as chest size or the ratio of sitting to standing height), socio-
economic status (which determines bodily development in early life and leads to secular
trends in body size and pulmonary function), growing up at altitude, and possibly other
environmental factors [108–119]. In the present study race and ethnicity were self-reported,
which may not be accurate enough for clinical purposes [120–122]. Indeed, in the absence
of genetic typing, predicted values in self-reported African Americans may be biased by up
to 200 mL [123]. This may have bearing on clinical diagnosis in view of the association
between genetic make-up and disease [124–130]. Until genetic typing becomes standard
practice and prediction equations incorporating genetic information become available, lung
size for mixed ethnicity can only be based on the ethnicity of the parents, or by using the
‘other’ group and interpreting results in the context of clinical symptoms.

4.6 Application in clinical practice
For any given height and sex, a one year difference in age can alter the predicted value by up
to 8.5% [51] in those under 20 years of age. Many commercial devices round age down to
completed years, a practice which is unacceptable as it introduces significant bias, especially
in young children. To minimise errors age should be recorded with decimal accuracy
(preferably as date of measurement minus date of birth). In paediatrics, many frequently
used prediction equations ignore age completely [6,7,131,132], which is also likely to lead
to bias.

The FEV1/FVC ratio in young children can be very high, with the predicted value and
particularly the ULN exceeding 1.0. In such cases they should be truncated at 1.0. Predicted
values for African Americans and East Asians differ proportionally from those in
Caucasians in two respects: the absolute values for FEV1 and FVC differ by a certain
percentage, and this percentage is very similar for FEV1 and FVC. As a result the FEV1/
FVC ratios in these groups were virtually identical (Table 3); South East Asians, with the
highest FEV1/FVC ratio, are the exception to this rule (Figure 2).

Caution is required interpreting the prediction equations for those over age ~75–80 years,
where the sample size is small (Figure 1, OLS Table E5). This also holds for North East
Asians under 15 years of age (Figure 1). In addition, the equations should not be applied to
indigenous Latin Americans. We found no evidence for differences in pulmonary function
among Caucasians in different parts of the world, nor between East Asians in the USA and
China. However, Indian Asians born and raised in the USA were found to have higher
pulmonary function for age and height than those born and raised in India [133]. Hence
more studies are required to elucidate the influence of country of birth on the level of lung
function.

4.7 Clinical decision making
Making a clinical diagnosis is an art, where test results help to confirm or reject the
diagnosis. A test result is regarded as compatible with disease if it is outside the normal
range, usually defined by the mean ±2 (strictly 1.96) standard deviations, which extends
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from the 2.5th to the 97.5th centile of the distribution. The American Thoracic Society and
the European Respiratory Society [8,84,134] both recommend the use of the 5th centile to
define the lower limit of normal (i.e. −1.64 z-scores). z-scores indicate how many standard
deviations (SD) a measurement is from its predicted value. Unlike percent of predicted, they
are free from bias due to age, height, sex and ethnic group, and are therefore particularly
useful in defining the lower and upper limits of normal; they also simplify uniform
interpretation of test results, particularly if presented as pictograms (Figure 8); software with
the latter facility is freely available from www.lungfunction.org.

When interpreting multiple tests which are physiologically related, applying the 5th centile
LLN to each of them and accumulating the results leads to a high percentage of false-
positives. Thus, in 41,136 reference females in this study, the cumulative percentage of test
results for FEV1, FVC and FEV1/FVC below the 5th centile is 10.4%. Using the 2.5th centile
(z-score −1.96) reduces this to 5.6%. In 30,895 reference males the corresponding figures
are 10.6 and 5.8%. In view of the above, the 2.5th centile LLN (z-score −1.96) is
recommended as the decision limit for screening and case finding purposes. However, in
subjects with prior evidence of lung disease a borderline low value of FEV1/FVC, FEV1 or
FVC is more likely to be associated with disease; depending on the strength of clinical
evidence of disease, and the cost and consequences of a false-positive or false-negative test
result, a LLN at the 5th centile (z-score −1.64) is clinically acceptable.

It is common practice to regard 80 percent of predicted as the lower limit of normal.
However, the true LLN, expressed as a percent of predicted, varies considerably with age
(Figure 6 and 7). Hence, the use of a fixed threshold such as 80% percent of predicted for
FEV1 and FVC or 0.7 for the FEV1/FVC ratio across all ages is discouraged as it leads to
significant misclassification [85] (Figure 7). In the collated data a z-score for FEV1/FVC
below the 5th centile was associated with a FEV1 below the 5th centile in 1.2% of cases,
with FEV1 percent predicted <80% in 1.3% of cases, and with FEV1 percent predicted
<70% in 0.4% of cases. In those aged over 40 years these percentages were 1.2%, 1.6% and
0.7%, respectively. This illustrates that the z-score is not biased by age.

FEF25–75% and FEF75 are measured conditional on the FVC. Therefore the between-subject
variability in these indices is the sum of intrinsic variability and variability in FVC.
Depending on age, sex and ethnic group, the between subject CoV varies between 20–62%
for FEF25–75% and between 27–89% for FEF75 (OLS Figure E9). While the FEF75% and
FEF25–75% are not among the indices recommended by ECSC/ERS [8], ATS [107,134] or
ATS/ERS [16], they were included in the current analyses in response to requests from
colleagues, especially those caring for children. The very high coefficients of variation
severely limit the use of these indices for diagnostic purposes in adults, but this does not
preclude smaller coefficients of variation within subjects, nor the use of these indices in
aetiological studies where differences between groups may provide valuable clues. FEV3
and FEV6 were not considered since so many children and adults cannot exhale for 3 and 6
s, respectively, and because very few data were submitted. In order to improve the current
equations for these outcomes, future studies in healthy subjects should ensure these are
measured; in view of the large coefficients of variation in those under age 20 years (20–33%
for FEF25–75%, and 27–42% for FEF75) further research is also required to determine
whether such outcomes are in fact clinically useful.

4.8 Strengths and weaknesses
The strengths of this study are that it is based on a large population sample of high quality
data from five continents, analysed using a technique that allows modelling both continuous
predicted values from pre-school to old age and their LLN. It is the first time that such
equations have been modelled for several ethnic groups simultaneously, confirming the
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presence of proportional differences between them (Figure 2, Table 3) [80,135]. Results in
Caucasians are comparable to those in large recent studies (OLS Figure E8). Data from
Africa, Polynesian peoples, the Indian subcontinent, the Arab world and South America are
urgently required. Whereas the data from South America seem to fit those for Caucasians,
data from children in Mexico City tend to be higher; hence, caution is required in applying
them to Latin Americans over the entire age range, or to those living at altitude or of
indigenous descent, as they were not included in the study. Finally, more data from the
elderly are required in all groups, and from young non-Caucasian children.

This study showed good agreement between predicted values in large studies with good
quality control and subject selection. Therefore the perceived need for locally defined
reference limits probably arises more from the lack of standardisation of selection
procedures and quality control than from local differences in reference populations. Even if
all reasonable precautions have been taken, large samples from the same population do not
necessarily yield the same predicted values [52,54]; collation of good quality studies has the
advantage of yielding a very large sample that is more representative of the population [14].

The current GLI 2012 equations, supported by the major international respiratory societies,
have the potential to improve the interpretation of spirometry results, and to standardise
interpretation across centres and countries. Many manufacturers have already implemented
the Stanojevic ‘all-age’ reference equations [13] and are therefore in an excellent position to
update to the present equations [136], thus avoiding the use of poorly connecting age-
grouped prediction equations. For example, frequently used regression equations lead to
major disagreements in predicted values in adolescents, and they connect poorly to those in
adults (Table 4). The transition is particularly poor in children who are short for age, for
example due to chronic lung disease. In addition the use of different equations, and moving
from one set to the next, confounds comparisons of patients from different centres around
the world (Table 4). Algorithms and standalone software for the GLI 2012 equations are
freely available from www.lungfunction.org.

Continued use of popular older equations is likely to lead to misclassification of patients.
This has direct bearing on the classification of subjects with lung disease, allocation of
subjects to treatment regimens in intervention studies, on BODE and other multidimensional
indices, and studies into the prevalence or natural course of respiratory disease. However,
most commercial database software will allow recalculation of predicted and derived values
of previously recorded data simply by changing the preferred reference equation, thereby
allowing accurate trend reports to be maintained within individual patients and appropriate
comparisons within longitudinal epidemiological studies.

4.9 Future developments
Given the pivotal role of proper predicted values for pulmonary function, and the recognised
limitations of the present study, an update will be required in a few years, when more data of
non-Caucasian origin will be available. The present and future data form a treasure trove for
research. It is therefore recommended to establish a body, preferably under the auspices of
international societies, with a long-term commitment to manage new data meeting minimum
requirements, and issue periodic updates to the equations. This organisation requires
appropriate management of data, including protection of privacy and owner’s interests/
rights. The organisation should provide an opportunity for the use of data under strict
conditions.
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5 CONCLUSIONS
This study has led to the derivation of continuous equations for predicted values and age-
appropriate LLN for spirometric indices from age 3–95 years, based on 74,187 records from
healthy non-smoking males and females from 26 countries across five continents. Ethnic and
geographic groups can be grouped under the headings Caucasian, African American, North
and South East Asian. However, information on pulmonary function is still incomplete in
many parts of the world, and more data on subjects over age 75 years are required. In the
meantime, the predicted values and reference range for those over ~75–80 years in all
groups, and in North East Asians below age 15 years, should be interpreted with caution.
Comparison with other large studies confirms that the collated data are of good quality,
differences being due to sampling error, and that collation of data has not led to inflation of
the coefficient of variation. The GLI 2012 reference equations are a huge step forward,
providing a robust reference standard to streamline the interpretation of spirometry results
within and between populations worldwide.

6 RECOMMENDATIONS
Widespread use of these global all-age equations depends on timely implementation by
manufacturers of spirometric devices, and should be encouraged by users and the
international respiratory societies.

• Given the extensive data now available from Caucasian subjects between 3–75
years of age, and the stability of the GLI 2012 spirometry reference equations for
such individuals, collection of further Caucasian normative data is not required.
Further data are, however, required for those above 75 years of age, and for pre-
school children.

• More studies are required in non-Caucasians, particularly Arab, Indian, Polynesian,
African and Latin American peoples, including ethnic minorities. Such studies
should adhere to international guidelines with respect to methodology, quality
control and selection of a representative sample of healthy reference subjects
between 3–95 years.

• For ethnic groups not covered by the GLI equations, representative samples (of at
least 300 subjects) can be used to validate use of one of the four groups, and/or
create an appropriate coefficient (adjustment factor) for a new group. Provided a
sufficiently large and representative sample, collected using standardised protocols,
is available, it should be possible to derive 0063suitable ethnic coefficients without
re-calculating the GLI equations.

• For individuals not currently represented by the GLI 2012 equations, or of mixed
ethnic origin, use of the ‘other’ equation is recommended, with the caveat that
results must be interpreted cautiously until a more appropriate solution is
developed.

• An international repository should be established to manage both existing and
future datasets to facilitate data sharing and update of the equations when required.

• When collecting lung function data or evaluating test results, particularly during
periods of rapid growth, age should be recorded in years with accuracy to at least
one decimal place (preferably as date of measurement minus date of birth), as
should standing height in cm, measured using a calibrated stadiometer.

• Defining the lower limit of normal as a fixed percent of predicted FEV1 or a fixed
FEV1/FVC ratio leads to age, height, sex and ethnic group related bias, and such
definitions should not be used.
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• The lower limit of normal (LLN) used should be appropriate for the purpose.
Hence if there is prior evidence of lung disease, a borderline value of FEV1/FVC,
FEV1 or FVC is more likely to be associated with disease and a LLN at the 5th

centile (LLN 5%, z-score −1.64) is clinically acceptable. By contrast, in
epidemiological studies and case finding of asymptomatic subjects, where the cost
and consequences of false-positive and false-negative test results are over-riding, a
LLN corresponding to the 2.5th centile (LLN 2.5%, z-score −1.96) is recommended
as the decision limit.
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Table 4

Comparison of predicted values in adult Caucasian males according to different authors. The transition from
one set of equations to another on the 18th birthday (a vs b or c vs d) is not smooth using older equations. The
discontinuity, and the disparity between predicted values, is much worse in those short for age (a vs b), than in
those of average height (c vs d). In adult males there is fair agreement between predicted values, although
those derived from the ECSC/ERS are systematically lower than others for subjects ≥ 25 years of age (e vs f).

a) 17.9 yr, 160 cm

Author FEV1 FVC FEV1/FVC

Polgar 3.09 3.42 N.A.

Rosenthal 2.70 3.69 0.84

Zapletal 2.93 3.53 0.85

Stanojevic 3.45 4.08 0.85

Wang 3.49 3.93 0.87

GLI 2012 3.61 4.12 0.88

b) 18.0 yr, 160 cm

Author FEV1 FVC FEV1/FVC

ECSC/ERS 3.67 4.23 0.83

Hankinson 3.58 4.12 0.84

Stanojevic 3.46 4.09 0.85

GLI 2012 3.61 4.13 0.88

c) 17.9 yr, 180 cm

Author FEV1 FVC FEV1/FVC

Polgar 4.30 4.69 N.A.

Rosenthal 4.27 5.17 0.82

Zapletal 4.11 4.99 0.85

Stanojevic 4.55 5.44 0.85

Wang 4.46 5.20 0.86

GLI 2012 4.68 5.47 0.86

d) 18.0 yr, 180 cm

Author FEV1 FVC FEV1/FVC

ECSC/ERS 4.53 5.38 0.83

Hankinson 4.53 5.39 0.84

Stanojevic 4.56 5.45 0.85

GLI 2012 4.69 5.49 0.86

e) 25 yr, 175 cm

Author FEV1 FVC FEV1/FVC

Crapo 4.45 5.32 0.84

ECSC/ERS 4.31 5.09 0.83

Hankinson 4.44 5.36 0.83

HSE 4.43 5.29 0.85
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e) 25 yr, 175 cm

Author FEV1 FVC FEV1/FVC

Knudson 4.39 5.24 0.84

Stanojevic 4.42 5.36 0.83

GLI 2012 4.46 5.32 0.85

f) 55 yr, 175 cm

Author FEV1 FVC FEV1/FVC

Crapo 3.71 4.67 0.79

ECSC/ERS 3.44 4.31 0.77

Hankinson 3.63 4.74 0.77

HSE 3.60 4.63 0.79

Knudson 3.52 4.35 0.81

Stanojevic 3.63 4.75 0.77

GLI 2012 3.65 4.66 0.79

Footnote: GLI = Global Lungs Initiative; Crapo [137], ECSC/ERS [8]; Hankinson – NHANES III [17]; HSE = Health Survey for England 1995–
1996 [53]; Knudson [138]; Polgar [7]; Rosenthal [132]; Stanojevic- ‘all age’ [13]; Zapletal [131], Wang [6]; N.A. = not available.
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