

Air pollution and the lung in children: the evidence for exposure and prevention measures

PD Dr. med. Jakob Usemann, MD PhD University Children's Hospital Basel

Overview

Background on pollutants outdoor and indoor pollutants

Outdoor air pollution during pregnancy and lung development (short term)

Outdoor air pollution during childhood and lung development (long term)

Overview

Outdoor:

Particulate matter (PM_{10} , $PM_{2.5}$, PM_1): carbon monoxide (CO), sulfur dioxide (SO_2), nitrogen oxide (NO_2), ozone (O_3), lead, polycyclic aromatic hydrocarbons (PAH)

Indoor:

Tobacco smoking, biomass, gas and other fuels for cooking and heating e.g. benzene, open fire places, furnishings, building materials

Background on outdoor air pollutants

PM: particulate matter / size in μm
Origin mostly traffic and industry
Rather homogenous spatial distribution

NO₂: nitric dioxide Origin mostly traffic Usually higher close to roads

Black carbon

Pure carbon in several forms
Origin incomplete combustion of fuel and biomass

Pollutants – spatial variation

Spatial variation – Utrecht (NL)

Spatial variation – Limpopo (South Africa)

Adapted from Schmidz et al. 2019. High resolution annual average air pollution concentration maps for the Netherlands, *Scientific Data 6:190035*

Adapted from Tshehla et al. 2019. Spatial and Temporal Variation of PM10 from Industrial Point Sources in a Rural Area in Limpopo, South Africa, *Int J Environ Res Public Health*. 2019

Pollutants – temporal variation in Switzerland

Temporal variation PM_{2.5}

Temporal variation NO₂

Pollutants – temporal variation in South Africa

Change in burned area (2005-2017)

Change in NO₂ (2005-2017)

Hickman JE et al. Reductions in NO2 burden over north equatorial Africa from decline in biomass burning in spite of growing fossil fuel use, 2005 to 2017, *PNAS February 16, 2021 118 (7) e2002579118;*

Air Pollution during pregnancy: mechanisms

- Dependent on stage of development
- Systemic effect on the mother:
 - reduced placental perfusion
 - reduced nutrient exchange
- Direct toxic effect through placental transfer of pollutants (e.g., nanoparticles)
- Proinflammatory/oxidative/hormonal stress effect
- Changes to the immune system development
- Changes to lung growth and development
- Genetic interactions/epigenetic effects

Air pollution during pregnancy

Lee et al. *Epidemiology 2011*, reviewed in Slama et al. *Env Health Persp 2008* adapted from Korten et al. *Ped Resp Rev 2017*

Infant lung function – Switzerland

241 term-born infants from the BILD cohort

Exposure towards PM₁₀ and NO₂ during pregnancy

Lung function at around 4 weeks

	Basic model			Full model		
	coefficient	CI 95%	p Value	coefficient	CI 95%	p Value
Prenatal PM ₁₀ and Minute ventilation [mL/min]	19.9	4.7 – 35.0	0.010	24.7	8.9 – 40.5	0.002
Prenatal NO ₂ and eNO [ppb]	0.67	0.23 – 1.10	0.003	0.96	0.44 – 1.48	<0.001

Infant lung function – South Africa

270 term-born infants from the Drakenstein Child Health Study

Exposure towards PM₁₀ during pregnancy and first year

	β-estimate (95% CI)	p-value
Prenatal		
PM ₁₀		
FRC (6 weeks)	-1.9 (-4.5-0.7)	0.160
Tidal volume (6 weeks)	-0.4 (-1.3-0.6)	0.419
FRC (1 year)	-9.0 (-17.20.9)	0.032#
Postnatal		
PM ₁₀		
FRC (1 year)	-4.3 (-12.5-3.9)	0.304
Tidal volume (1 year)	-2.9 (-5.40.5)	0.022#
LRTI (in the first year)	0.0 (-0.3-0.4)	0.799

Childhood lung function— Spain

620 term-born infants from the INfancia y Medio Ambiente (INMA) cohort Exposure towards benzene and NO₂ during pregnancy (second trimester) Lung function at around 4.5 years, outcome FEV1

Effects of long-term air pollution exposure during childhood

- Development of chronic lung problems in children
- Reduced lung function

```
(z.B. Env. Research 1989; 50: 309-321)
```

- PMx \rightarrow development of bronchitis, chronic cough, less from asthma

```
(J Air Poll Control Assoc. 1982; 32: 937-942)
(Schweiz: AJRCCM 1997; 155:1042-1049)
```

Ozone → decline in lung function

```
(Env. Research 1997; 72: 8-23)
```

Road traffic (outdoor NO_2 + polycyclic aromatic hydrocarbons KWS, Diesel) correlated
 with asthma, hay fever, sensitisaiton to airborne allergens

```
(ERJ 1997; 10: 2275-8)
```

(Epidemiology 2000; 11: 64-70)

Lung development and prenatal exposure

'Tracking' of lung function during development

A Male Study Members

Stern et al. Lancet 2007;370:758-64

Sears MR et al. N Engl J Med 2003;349:1414-22

Early childhood risk factors associated with functional development throughout life

Childhood risk factors for the decline in lung function in adulthood (28–73 yrs.)

- Infants born during winter
- Smoking mothers
- Older mothers

Dravda J et al. SAPALDIA PlosOne 2016; DOI 10.1371

Summarized in e.g. Postma D et al. Lancet 2015;385:899–909

Influence of long-lerm exposure on lung development

Air pollution in Poland is associated with reduced lung function during development

```
(e.g., Env Health Perspect 1999; 107: 669-674)
```

PM₁₀ particle concentration is inversley correlated to lung function development during childhood

```
(ERJ 2002; 19: 838-845)
```

Children who move away from polluted areas can return to normal lung functional development (and vice versa)

```
(AJRCCM; 2001; 164: 2067-72)
```

Improvement in air quality → reduced clinical symptoms

(AJRCCM; 2000; 161: 1930-36)

Early fife low level air pollution and lung functional growth

Early low level air pollution and lung growth

Long-term effects on health developement

Percentage of solid fuel use

Exposure levels of indoor air pollution

Switzerland: PM_{2.5} ca 12.1 µg/m3

Indoor air pollution and asthma

TABLE 1	Studies of the relationship between biomass exposure and asthma prevalence								
First author [ref.]	Country	Fuel type	Sample size	Sample type	Diagnosis criteria	Effect size OR (95% CI)			
MOHAMED [95]	Kenya	Biomass and clean fuel	77 cases and 77 controls	Children aged 9-11 yrs	Adapted from IUATLD	2.5 (2.0–6.4)			
Azızı [96]	Malaysia	Wood and kerosene	158 cases and 201 control	Children aged 1 month to 5 yrs	Hospital-based doctor diagnosed	1.4 (0.60–3.60) wood and 0.9 (0.50–1.60) kerosene			
MELSOM [97]	Nepal	Biomass and clean fuel	121 cases and 126 control	Children aged 11–17 yrs	ISAAC criteria	2.2 (1.0–4.5)			
MISHRA [98]	India	Biomass and clean fuel	38595 subjects	Adults aged ≽60 yrs	Based on interviewee replying yes to asthma questionnaire	1.59 (1.30–1.94)			
SCHEI [99]	Guatemala	Wood	1058 subjects	Children aged 4-6 yrs	ISAAC criteria	1.8 (0.76–4.19)			

© UKBB Jakob Usemann O.P. Kurmi et al. *ERJ* 2012

Conclusion

Associations between exposure towards air pollution and impaired lung development are relatively clear

Stronger effects seem to exist during periods of fastest lung growth

Reduction in exposure is associated with improved lung growth

Exposure below WHO cut-offs still have negative effects on lung function

Combination of risk factors attenuates detrimental effects on lung growth

Modifiable risk factors should further be reduced

Acknowledgements

Professor Prof Urs Frey, Basel

Professor Philipp Latzin, Bern

PD Dr. Kees de Hoogh & Professor Martin Röösli from Swiss TPH Basel

Thank you very much for your attention

© UKBB Jakob Usemann

© UKBB Jakob Usemann

Air Pollution and the Lung in Children Prevention Measures

Rebecca Nantanda

PATS & ERS Paediatric Webinar

Tuesday 13th July 2021

Common sources of air pollution

Why intervene?

Air pollution has life long implications (intra-uterine life – adulthood)

- Growing lungs (and other body organs) are very vulnerable to effects of air pollution
 - Impact on overall growth and development and the potential of affected children
- Air pollution is directly linked to killer diseases
 50% of pneumonia deaths linked to air pollution
- Reducing air pollution leads to improvement in lung function

How to protect children from air pollution

- Invest in sustainable cleaner energy sources
- Reduce on fossil fuel combustion
- Minimize children's exposure to polluted air
- Improve air pollution monitoring and its link with children's health
- Strengthen children's overall health increased resilience to effects of air pollution

Approach to interventions

The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812

MARCH 5, 2015

VOL. 372 NO. 10

Association of Improved Air Quality with Lung Development in Children

W. James Gauderman, Ph.D., Robert Urman, M.S., Edward Avol, M.S., Kiros Berhane, Ph.D., Rob McConnell, M.D., Edward Rappaport, M.S., Roger Chang, Ph.D., Fred Lurmann, M.S., and Frank Gilliland, M.D., Ph.D.

Nitrogen Dioxide (ppb)

Gauderman et al. NEJM 2015;372:905-13

Global Alliance for Clean Cookstoves

CLEAN COOKSTOVES

THE RESPIRE TRIAL: Guatemala highlands

534 households with a pregnant woman or infant randomized to receive a chimney stove or retain the open fire

Primary outcome: incidence of pneumonia in children

Results

- Non-significant reduction in incidence of physician-diagnosed pneumonia
- Significant reduction in physician-diagnosed severe pneumonia (RR 0.67; 95% CI 0.45 to 0.98)

Cooking and Pneumonia Study (CAPS)

A cleaner burning biomass-fuelled cookstove intervention to $\Re \mathbb{R} \setminus \mathbb{R}$ prevent pneumonia in children under 5 years old in rural Malawi (the Cooking and Pneumonia Study): a cluster randomised controlled trial

Kevin Mortimer, Chifundo B Ndamala, Andrew W Naunje, Jullita Malava, Cynthia Katundu, William Weston, Deborah Havens, Daniel Pope, Nigel G Bruce, Moffat Nyirenda, Duolao Wang, Amelia Crampin, Jonathan Grigg, John Balmes, Stephen B Gordon

Background WHO estimates exposure to air pollution from cooking with solid fuels is associated with over 4 million premature deaths worldwide every year including half a million children under the age of 5 years from pneumonia. We hypothesised that replacing open fires with cleaner burning biomass-fuelled cookstoves would reduce pneumonia incidence in young children.

Methods We did a community-level open cluster randomised controlled trial to compare the effects of a cleaner burning biomass-fuelled cookstove intervention to continuation of open fire cooking on pneumonia in children living in two rural districts, Chikhwawa and Karonga, of Malawi. Clusters were randomly allocated to intervention and control groups using a computer-generated randomisation schedule with stratification by site, distance from health centre, and size of cluster. Within clusters, households with a child under the age of 4.5 years were eligible. Intervention households received two biomass-fuelled cookstoves and a solar panel. The primary outcome was WHO Integrated Management of Childhood Illness (IMCI)-defined pneumonia episodes in children under 5 years of age. Efficacy and safety analyses were by intention to treat. The trial is registered with ISRCTN, number ISRCTN59448623.

Findings We enrolled 10750 children from 8626 households across 150 clusters between Dec 9, 2013, and Feb 28, 2016. 10543 children from 8470 households contributed 15991 child-years of follow-up data to the intention-to-treat analysis. The IMCI pneumonia incidence rate in the intervention group was 15.76 (95% CI 14.89-16.63) per 100 child-years and in the control group 15.58 (95% CI 14.72–16.45) per 100 child-years, with an intervention versus control incidence rate ratio (IRR) of 1.01 (95% CI 0.91–1.13; p=0.80). Cooking-related serious adverse events (burns) were seen in 19 children; nine in the intervention and ten (one death) in the control group (IRR 0.91 [95% CI 0.37-2.23]; p=0.83).

Interpretation We found no evidence that an intervention comprising cleaner burning biomass-fuelled cookstoves reduced the risk of pneumonia in young children in rural Malawi. Effective strategies to reduce the adverse health effects of household air pollution are needed.

Funding Medical Research Council, UK Department for International Development, and Wellcome Trust.

Lancet 2017; 389: 167-75

Published Online December 6, 2016 http://dx.doi.org/10.1016/ 50140-6736(16)32507-7

See Comment page 130

Malawi Liverpool Wellcome Trust Programme, Blantyre, Malawi (K Mortimer PhD, C B Ndamala Dip, A W Naunje W Weston MBChB. Prof S B Gordon MD): Liverpoo School of Tropical Medicine, Liverpool, UK (K Mortimer, W Weston, D Havens DO, Prof D Wang PhD, Prof S B Gordon); Malawi **Epidemiology and Intervention** Research Unit, Chilumba Malawi (J Malava MPH, C Katundu Dip, Prof M Nyirenda PhD. A Crampin MPH); University of Liverpool, Liverpool UK (D Pope PhD, Prof N G Bruce PhD); London School of Hygiene & Tropical Medicine, London, UK (Prof M Nyirenda, A Crampin); Queen Mary University of

London, London, UK

(Prof J Grigg MD); University of

Rwanda: High efficiency wood burning stove

- 2174 children, 5934 episodes of ARI
- Primary outcome –caregiver reported ARI
- Measured personal exposure for the cooks and child
- 25% reduction in prevalence of ARI, statistically significant PR=0.75 (0.60-0.93), p=0.009 (broad definition of pneumonia)
- No statistically significant difference –DHS –defined pneumonia, current pneumonia
- No statistically significant difference in mean PM2.5
- Decline in clean cookstove use from 81.2% to 64.4%
- Increase in use of traditional stove use from 24.1% to 49.4%

LPG use in the pilot study in India: HAPIN trial

Enrolled 41 women

No previous use of LPG, Gestation weeks 9 to <20 weeks

Design: Before and after study

Intervention: Free of cost LPG, 100% adherence

Measurements:

Personal, kitchen and outdoor PM_{2.5}

baseline, 1 and 2 months

- Kitchen=93% reduction in mean PM_{2.5}
- Personal =78% reduction

Effect of LPG use on cardiopulmonary outcomes: RCT in Puno, Peru

Participants: 180 rural women aged 25-64 years

Intervention package: Stove, LPG delivery for 1 year, Education and behavioural change

messaging

Assessment: BP, PEF, Respiratory symptoms (SGRQ), PM_{2.5} CO, BC

Adherence assessed using temperature loggers

Primary outcomes

Differences in lung function and respiratory symptoms

Results

- LPG used in 98% of the days
- No difference in lung function and respiratory symptoms

Checkley W, et al. AJRCCM 2021

Global Public Health

An International Journal for Research, Policy and Practice

ISSN: 1744-1692 (Print) 1744-1706 (Online) Journal homepage: https://www.tandfonline.com/loi/rgph20

Feasibility and acceptability of a midwife-led health education strategy to reduce exposure to biomass smoke among pregnant women in Uganda, A FRESH AIR project

Rebecca Nantanda, Shamim Buteme, Sanne van Kampen, Lucy Cartwright, Jill Pooler, Andy Barton, Lynne Callaghan, Jean Mirembe, Grace Ndeezi, James K. Tumwine, Bruce Kirenga & Rupert Jones

Educational interventions: Midwife-led project in Uganda

Key findings

- Improvements in knowledge about risks of biomass smoke
- Changes made- keeping away from smoke, burying refuse
- Intent to change
- Buy solar panels, clean cookstoves
- Put chimneys on the kitchen
- Major barrier -Poverty

Policy initiatives

Country/Year	Intervention
UK	Standards and implementation of fuel quality initiated by The
	Quality Assured Fuel Scheme.
	National campaign to encourage uptake
South Africa	Encouraged investments in renewal energy through various funds,
	tax allowances and deductions
Namibia	Public campaign on forest conservation-reduction of fire
	incidences by 70%
Chile	Ministry of Environment- exchange of old stoves with new clean
	cookstoves
Rwanda	Banned non-biodegradable plastic bags -reduction in amount of
	burnt plastics
<u> </u>	Clean the Air for Children LINICEE 2016

Clean the Air for Children UNICEF 2016

Urban planning

- Gazetted areas for industries
- Structural designs and operations that minimize industrial emissions
- Provision for active transport

Personal strategies

- Limit physical exertion outdoors on high pollution days
- Minimize use of highly polluted areas/roads
- Air quality alert systems

Gaps and Research Opportunities

- How clean does the air need to get for health benefits to be seen?
- Cohort studies in Africa to document the impact of sustained air pollution exposure reduction and lung health
- Rigorous and methodologically strong studies with clear underlying behavioural theories and practices
- Evaluate early life origin of disease in relation to biomass smoke exposures in utero and early childhood
- Government-led initiatives in air quality monitoring, air quality management policies and how these impact of lung health outcomes

Behavioural change interventions to improve adherence to clean cooking

Formative research key findings

- Perceived disadvantage of solid fuel stoves
- Family influence on cooking decisions
- Heating needs
- Previous awareness and experience with LPG
- Traditional cookware and stoves used in the cooking
- Traditional foods and preferred stove for preparing them

DETERMINANTS OF LUNG FUNCTION AMONG INFANTS IN UGANDA: A BIRTH COHORT STUDY

Children's Air Pollution Profiles in Africa

(CAPPA)

Conclusions

- Interventions to reduce air pollution and improve children's lung health –mixed results
- Further research
 - Technologies-Low cost designs that are acceptable and sustainable
 - Incorporate behavioural change in studies on air pollution
 - Policies
 - Affordability, access to desired stoves/fuel, stove maintenance/ lifespan
- Consider in-depth evaluations to provide insight into fidelity, feasibility, quality of implementation and causal mechanisms

THANK YOU